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Abstract 
Accurate prediction of the financial health of companies is an important task for stakeholders. In this work we apply 
several learning machines methods to the problem of bankruptcy prediction of medium-sized private companies. 
Financial data were obtained from Diana, a large database containing financial statements of French companies. 
Classification accuracy is evaluated with Artificial Neural Networks, Linear Genetic Programming and Support Vector 
Machines. We analyze both type I (bankrupted companies misclassified as healthy) and type II (healthy companies 
misclassified as bankrupted) errors on three datasets containing balanced and unbalanced class distribution. Linear 
Genetic Programming has the best accuracy in the balanced data while Support Vector Machines is more stable for the 
unbalanced dataset. Our results demonstrate the potential of using learning machines, with respect to discriminant 
analysis, in solving important economics problems such as bankruptcy prediction.  
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1. Introduction 
Financial distress prediction is of great importance to 
banks, insurance firms, creditors and investors. The 
problem is stated as follows: given a set of parameters 
(mainly of financial nature) describing the situation of a 
company over a given period, predict the probability 
that the company may become bankrupted in a near 
future, normaly during the following year. 
 There has been considerable interest in using 
financial ratios for predicting financial distress in 
companies since the seminal work of Beaver [1] using 
univariate analysis and Altman approach with multiple 
discriminant analysis [2]. Despite its limitations [3], 
Multiple Discriminant Analysis (MLD) is still largely 
used as a standard tool for bankruptcy prediction. Non-
linear models, such as the Logit [4] and Probit [5], are 
used with caution as they only slightly improve the 
accuracy of MLD and may be sensitive to exceptions, 
common in this problem. 

Bankruptcy prediction is a very hard classification 
problem as it is high-dimensional, most data 
distribution is non-Gaussian and exceptions are 
common [6]. A nonlinear classifier should be superior 
to a linear approach due to saturation effects and 
multiplicative factors in the relationships between the 
financial ratios. For example, an increase of the 
earnings to total assets ratio from -0.1 to 0.1 is more 
relevant than an increase from 1.0 to 1.2. One the other 
the potential for default of a firm with negative cash 
flow is more amplified if it has large liabilities.  

ANNs, implemented by multilayer preceptrons, 

have been increasingly used to default prediction as 
they generaly outperform other existing methods [7-9]. 
More recent methods, such as Support Vector 
Machines, Genetic Algorithms and Genetic 
Programming have also been applied in this problem 
with success [11][12]. In general all these approaches 
outperform Multiple Discriminant Analysis. However, 
in most cases the datasets used are very small 
(sometimes with less than 100 cases) often highly 
unbalanced which does not allow a fair comparison 
[10].  

In this work we compare the efficiency of four 
machine learning approaches on bankruptcy prediction 
using a large database of French private companies. 
This database is very detailed as it contains a wide set 
of financial ratios spanning over a period of three years, 
corresponding to more than one thousand of healthy and 
distressed companies. The approaches used are: Linear 
Genetic Programming, Support Vector Machines and 
Artificial Neural Networks in two versions: multilayer 
perceptrons and Hidden Layer Learning Vector 
Quantization. 

This paper is organized as follows: Section 2 
presents the Linear Genetic Programming method, 
Section 3 introduces support vector machines and 
Section 4 Artificial Neural Networks. Section 5 
describes the dataset and Section 6 presents the results 
and discussion. Finally, Section 7 presents the 
conclusions. 
 
 



2. Genetic Programming 
Genetic programming is a branch of genetic algorithms 
[13][14]. The main difference between genetic 
programs and genetic algorithms is the representation of 
the solution. Genetic programs create computer 
programs (like lisp) that represent the solution whereas 
genetic algorithms create a string that represents the 
solution.  

The key steps of genetic programming in problem 
solving include: 

 Generate an initial population of random 
compositions of the functions and terminals of the 
problem. 

 Execute each program in the population and assign 
it a fitness value according to how well it solves the 
problem. 

 Create a new population of computer programs by 
 copying the best existing programs 
 creating new computer programs by mutation 
 creating new computer programs by crossover 

 The best computer program that appeared in any 
generation, the best-so-far solution, is designated as 
the result of genetic programming. 

Fitness Function 
The fitness function determines how well a program is 
able to solve the problem.  

Functions and Terminals 
The terminal and function sets are the alphabet of the 
programs to be made. The terminal set consists of the 
variables and constants of the programs. In the maze 
example of Ref. [13], the terminal set would contain 
three commands: forward, right and left. The function 
set consists of the functions of the program, including 
ordinary functions such as addition, subtraction, 
division, multiplication and more complex functions. 

Crossover Operation 
In the crossover operation, two parent solutions are 
combined to form two new solutions or offspring. The 
parents are chosen from the population according to a 
fitness function of the solutions.  

Three basic methods exist for selecting the 
solutions for the crossover operation:  

 Probability based selection. If ))(( tSf i  is the 
fitness of the solution Si and  
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 Tournament based selection. Typically the genetic 
program chooses two random solutions where the 
solution with the higher fitness wins. This method 
simulates biological mating patterns in which two 
members of the same sex compete to mate with a 
third member of a different sex.  

 Rank based selection. Selection is based on the 
rank and not the numerical value of the fitness 
values of the solutions. 
 
An important improvement that genetic programs 

display over genetic algorithms is its ability to create 
two new solutions from the same solution, thus 
increasing diversity. 

Mutation 
Mutation is an important feature of genetic 
programming. Two types of mutations are possible. In 
the first kind a function can only replace a function or a 
terminal can only replace a terminal. In the second kind 
an entire subtree can replace another subtree. 

2.1. Linear Genetic Programming 

Linear Genetic Programming (LGP) is a variant of the 
genetic programming technique that acts on linear 
genomes [10]. The linear genetic programming 
technique used for our current experiment is based on 
machine code level manipulation and evaluation of 
programs. Its main characteristic, in comparison to tree-
based GP, is that the evolvable units are not the 
expressions of a functional programming language (like 
LISP); instead, programs of an imperative language 
(like C) are evolved.  

In the automatic induction of machine code by GP, 
individuals are manipulated directly as binary code in 
memory and executed directly without passing through 
an interpreter during fitness calculation. The LGP 
tournament selection procedure puts the lowest 
selection pressure on the individuals by allowing only 
two individuals to participate in a tournament. A copy 
of the winner replaces the loser of each tournament. The 
crossover points only occur between instructions. Inside 
instructions the mutation operation randomly replaces 
the instruction identifier. 
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Fig. 1.  Intron elimination in GP. 

In GP an intron is defined as part of a program that 
has no influence on the fitness calculation of outputs for 
all possible inputs. Fitness F of an individual program p 
is calculated as 
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i.e., the mean square error (MSE) between the predicted 
output ( oij

pred ) and the desired output ( oij
des ) for all n 

training samples and m outputs. The classification error 
(CE) is defined as the number of misclassifications. 
Mean classification error (MCE) is added to the fitness 
function while its contribution is determined by the 
absolute value of weight (w) [15]. 
 
 
3. Support Vector Machines 
Support Vector Machines (SVMs) [16][17] are a 
learning-by-example paradigm spanning through a wide 
range of classification, regression and density 
estimation problems. Many applications of SVM in 
science and engineering have been reported – see Ref. 
[18] for a review. This technique has its roots in 
statistical learning theory [16] and is an efficient 
approach to build optimum classifiers according a given 
criterion, usually the maximal margin criterion. 

Outfitted with a sound mathematical background, 
SVMs are able to solve the problem of minimizing the 
complexity in learning while keeping a good 
generalization capability. This trade-off between 
complexity and accuracy leads to a range of principles 
that guarantee an optimal compromise. Cortes and 
Vapnik [17] have shown that the generalization is 
bounded by the sum of the training error and a term 
depending on the Vapnik-Chervonenkis (VC) 
dimension of the learning machine, leading to the 
formulation of the principle of Structural Risk 
Minimization (SRM). Good generalization can be 
achieved by minimizing above upper bound, which 
mainly depends on the classifier margin. 

A brief review of Support Vector 
Classification (SVC) follows. For a detailed review see 

[16]. SVC was first proposed in pattern recognition for 
binary patterns where { }1±≡∈Yyi . The learning 
method uses input-output training examples from the 
data set  { }liYXyxD N

ii ≤≤×ℜ⊆∈= 1:),(  such 
that the decision function f classifies correctly test data 
(x, y) that is generated from the same underlying 
probability distribution P(x,y). In this framework, 
SVMs with Reproducing Kernel k(.,.) finds the 
minimizer of:  
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where V is a loss function that measures the discrepancy 
of the interpolating function output  f(xi)  with respect to 
the given output  yi, Fk is the Reproducing Kernel 
Hilbert Space (RKHS) with Reproducing Kernel k  and 
λ  a positive parameter. The minimizer of (2) has the 
form:  
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with ., ℜ∈biα  The learning problem can be formulated 
as minimizing the function f using the loss function 
defined by V y f y fi i i i( , ( )) | ( )|x x= − +1 . The equivalent 
quadratic programming problem originally proposed in 
[20] is:  
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subjected to the constraints:  
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where C is the penalty constant (regularization 
parameter) and ξ  the slack variable. The first term in 

Eq. (4) is the empirical error measured by i
l

i=∑ 1ξ . The 
second term controls the learning machine capacity 
measured in terms of the norm of f and corresponds to 
minimizing the machine VC-dimension. 

Alternatively, the equivalent optimization problem, 
the so-called dual problem, needs to be solved whose 
solution in the binary classification is the solution of (5) 
under the indicated constraints.  
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with respect to α i , where 0 ≤ ≤α i
C
l ,  i = 1,…,l and 

i
l

i iy=∑ =1 0α ,  the solution has again the form of Eq. 
(3). The input data points xi for which iα is non-zero 
are the so-called support vectors. The bias term b 
follows from the Karush-Kuhn-Tucker (KKT) 
conditions. 
 
4. Neural Networks 
The Hidden Layer Learning Vector Quantization 
(HLVQ) is an algorithm recently proposed for 
classification of high dimensional data [21][23]. HLVQ 
is implemented in three steps. First, a multilayer 
perceptron is trained using back-propagation. Second, 
supervised Learning Vector Quantization is applied to 
the outputs of the last hidden layer to obtain the code-

vectors icw  corresponding to each class ci in which 

data are to be classified. Each example, ix , is assigned 
to the class ck having the smallest Euclidian distance to 
the respective code-vector:  

)(min xhwk jc
j

−=  (7) 

where h
r

 is a vector containing the outputs of the 
hidden layer and ⋅  denotes the usual Euclidian 
distance.  In the third step the MLP is retrained but with 
two differences regarding conventional multilayer 
training. First the error correction is not applied to the 
output layer but directly to the last hidden layer being 
the output layer ignored from now on. The second 
difference is in the error correction backpropagated to 
each hidden node:  
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where Nh is the number of hidden nodes. After 
retraining the MLP a new set of code-vectors,  

icic
new
c www i ∆+=  

(9) 

is obtained according to the following training scheme:  
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(10) 

The parameter α  is the learning rate, which should 
decrease with iteration n to guarantee convergence. 
Steps two and three are repeated following an iterative 
process. The stopping criterion is met when a minimum 
classification error is found.  

The distance of given example xr  to each prototype 
is: 

ici wxhd −= )(  (11) 

which is a proximity measure to each class.  
After HLVQ is applied, only a small fraction of the 

hidden nodes is relevant for the code-vectors. Therefore 
HLVQ simplifies the network thus reducing the risk of 
overfitting. 
 
5. Dataset and feature selection 
5.1 Dataset 
We used a sample obtained from Diana, a database 
containing financial statements of about 780,000 French 
companies. The initial sample consisted of financial 
ratios of 2,800 industrial French companies, for the 
years of 1998, 1999 and 2000, with at least 35 
employees. From these companies, 311 were declared 
bankrupted in 2000 and 272 presented a restructuring 
plan (“Plan de redressement”) to the court for approval 
by the creditors. We decided not to distinguish these 
two categories as both signal companies in financial 
distress. The sample used for this study has 583 
financial distressed firms, most of them small to 
medium size, with a number of employees from 35 to 
400, corresponding to the year of 1999 - thus we are 
making bankruptcy prediction one year ahead. 

This dataset includes companies from a wide range 
of industrial sectors with 30 financial ratios defined by 
COFACE1 and included in the Diana database. 
 
5.2 Feature selection 
In this work, we start by considering all the financial 
ratios produced by Coface. These ratios allow a very 
comprehensive financial analysis of the firms including 
the financial strength, liquidity, solvability, productivity 
of labor and capital, margins, net profitability and return 
on investment. Although, in the context of linear 
models, some of these variables have small 
discriminatory capabilities for default prediction, the 
non-linear approaches here used can extract relevant 
information contained in these ratios to improve the 
classification accuracy without compromising 
generalization.  

Feature selection is an important issue in 
bankruptcy prediction, as in other problems where a 
large set of attributes is available. Of the large number 
of features available for predicting the financial health 
of a company, which are truly useful? Which of those 
features are significant and which are useless? These 
questions are relevant since elimination of useless 
features may enhance the accuracy of detection while 
reducing the amount of time in processing the data.  

 
                                                 
1 Coface is a French credit risk provider 
 



Table 1: Variables used for the problem. 

# Variable definition 

1 Number of employees 

2 Financial equilibrium ratio 

3 Equity to Stable Funds 

4 Financial autonomy 

5 Current ratio 

6 Collection period 

7 Interest to sales (%) 

8 Debt ratio 

9 Financial Debt to Cash earnings 

10 Working capital requirements in sales days 

11 Value added per employee  

12 Value added to assets 

13 EBITDA margin 

14 Margin before extra items and taxes 

15 Return on equity 

16 Value added margin 

17 Percentage of value added for employees 

18 Working capital to current assets 

 
The feature selection problem for bankruptcy 

prediction is similar in nature to various engineering 
problems that are characterized by: 

 Having a large number of input variables x = (x1, x2, 
…, xn) of varying degrees of importance to the output y; 
it is known that i) some elements of x are essential 
while others less important; ii) some of components 
may not be mutually independent and iii) some may be 
completely useless or noise for determining the value of 
y. 

 Lacking an analytical model that provides the basis 
for a mathematical formula that precisely describes the 
input-output relationship: y = F (x). 

 Having available a finite set of experimental data, 
based on which a model is built for simulation and 
prediction. 

Due to the lack of an analytical model, the relative 
importance of the input variables can only be estimated 
through empirical methods. A complete analysis would 
require examination of all possibilities, e.g., taking two 
variables at a time to analyze their dependence or 
correlation, then taking three at a time, etc. This, 
however, is both infeasible (requiring 2n experiments!) 
and not completely error free since the available data 
may be of poor quality in sampling the whole input 
space. 
 
Feature Selection with ANN 
In a first step, highly correlated variables were 
automatically excluded. In a second step, elimination 
was based on the sensitivity of the neural network 
output to each variable. 

The sensitivity of each variable xi was then 
estimated by adding a small perturbation to the input 

),...,,...,( 1 ni xxxx ∆+ , and evaluating the correspondent 
variation of the output y. After repeating this evaluation 
for all data available we obtain an average iS  and 
standard variation, iS∆ , of the sensitivity of each 
variable i.  
 The average sensitivity measures the linear and 
additive influence of the variables to the output. 
However, this quantity does not take into account non-
linear influences and possible interactions with other 
variables. These interactions may be identified with the 
standard deviation of the sensitivity. Thus variables 
with both iS and iS∆ small were eliminated. 

From the 30 initial ratios we select the 18 most 
relevant and normalized them to zero mean and unity 
variance. Table 1 presents the eighteen variables used 
for prediction.  
 
Feature ranking by LGP 
Of the features selected by ANN, table 2 presents  the 
ranking obtained using the LGP feature ranking 
algorithm [11] which measures the relevance of each 
variable for output prediction. In the top five, for all 
datasets, we have value added to assets, percentage of 
value added for employees and debt ratio which is 
consistent with other studies – for example see Ref. [2].  

 



Table 2: Feature important as ranked by LGP. 

Feature Rank 
 

Dataset 1 Dataset 2 Dataset 3 

1 12 12 6 
2 17 8 17 
3 8 17 1 
4 1 6 8 
5 4 4 12 
6 18 18 19 
7 19 9 7 
8 6 3 10 
9 3 5 11 

10 10 1 3 
11 16 7 18 
12 2 19 13 
13 5 2 2 
14 9 13 4 
15 13 11 9 
16 15 14 15 
17 7 16 16 
18 11 10 5 
19 14 15 14 

 
5.3 Error analysis 
There are two types of errors for this classification 
problem: type I error and type II error. Type I error is 
the number of cases classified as healthy when they are 
really bankrupted, N01, divided by the number of 
bankrupt companies N1: 

e N
NI =

10

1

. 
(12) 

 
Type II error is the number of companies 

classified as bankrupt when in reality they are healthy, 
N01, divided by the total number of healthy companies, 
N0: 

e N
NII =

01

0

. 
(13) 

 
The total error is just: 

e N N
N NTotal =

+
+

10 01

0 1

. 
(14) 

 
For a balanced dataset with N N0 1= , the total error is 
average of both errors. The accuracy is defined as 1- 
eTotal .  

Most companies on the verge of bankruptcy have 
heterogeneous patterns which are difficult to identify by 
any learning machine. Therefore type I error is in 
general higher than type II. Since the cost associated 

with this type of error is in general higher, in real 
applications global accuracy may not be the best 
performance indicator of the algorithm. 

To study the effect of unbalanced datasets, we 
randomly added healthy companies in order to get the 
following ratios of bankrupted to healthy firms: dataset 
1 (50/50), dataset 2 (36/64) and dataset 3 (28/72). 
Lower ratios put stronger bias towards healthy firms, 
deteriorating the generalization capabilities of the 
network and increasing type I error which is 
undesirable. 
 
6. Results 
We applied all methods to three datasets, one balanced 
(dataset 1) and two unbalanced – dataset 2 and 3. We 
used 10-fold cross validation to evaluate their 
generalization errors. 
 
6.1 LGP 
Table 3 show the accuracy obtained with LGP. On the 
balanced dataset both error types are similar, but on the 
unbalanced dataset error I is very large, although the 
overall accuracy is above 80%. 

 
Table 3: Performance Accuracy of LGP 

LGP Best Program LGP Best Team Dataset 
Accuracy (%) Accuracy (%) 

1 78.88 81.69 77.25 78.96 
2 84.50 85.42 84.00 83.65 
3 86.44 87.29 85.75 86.04 
 
 
6.2 SVM 
For SVMs we have to select the best model for each 
dataset. The common kernel functions, e.g., Gaussian, 
polynomial and sigmoidal, tend to project data onto a 
high dimensional space, often increasing the risk of 
overfitting. This can be controlled using the capacity of 
the machine through the maximization of the margin 
and hyperparameter selection. While the choice of the 
kernel still remains a research issue, an RBF Gaussian 
kernel has been used since good results in many 
practical problems have been reported so far.  

Using a grid search (see Figure 2) we seeks the 
optimum values of the constraint penalty for the 
method's solution and the kernel width (C,γ) has been 
performed. The best model parameters have been 
obtained for the three data sets under test as shown in 
Table 4. Model selection has thus been accomplished 
avoiding the costly trial and error procedure [21]. 
 
Table 4:  Best SVM parameters for the three datasets. 
Parameters C γ 
Best model 1 20 2-10 



Best model 2 28 2-11 
Best model 3 28 2-9 
 

Results of the performance accuracies and type I 
and II errors attained by using the SVMs as learning 
machines are presented in tables 5 and 6. 
 Receiver Operating Characteristics (ROC) curves 
are used to evaluate the classifiers' performance and 
provide information on the trade-off between the hit 
rate or true positives, and the false alarm rate or false 
positives – Fig. 3. In this application negative examples 
abound while positive cases are rare and 
uncharacteristic. The ROC curves were obtained using 
this set of positive and negative examples [24]. To 
circumvent the bias induced by unbalanced data, 
weighting factors have been used in the SVMs 
algorithm [16]. 
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Fig. 2. Hyperparameters Grid Search: 
C = =− −2 2 2 25 15 15 1L L,γ  

 
 Since, in many cases, we have more healthy than 
bankrupted companies, weighting factors were 
introduced in the SVMs algorithm. To assess the 
performance of the classifiers, probabilistic outputs for 
SVMs, which require the class probabilities, have been 
calculated and ROC curves computed – Fig. 3. 
 

 
Fig. 3. ROC Curves for SVM. 

 
Table 5: Error type I and II for all methods used. 
 
 Data set 1 Data set 2 Data set 3 
 Error I Error II Error I Error II Error I Error II
LGP 25.13 16.75 42.22 3.37 32.08 4.33 
SVM 29.95 18.99 34.44 13.28 36.57 12.03 
HLVQ 25.55 20.39 33.84 10.75 39.80 8.05 
MLP 27.75 21.86 35.95 12.83 36.10 6.83 
 
 
Table 6: Overall Accuracy 
 Data set 1 Data set 2 Data set 3 
LGP 79.06 82.64 87.90 
SVM 75.53 79.10 81.10 



HLVQ 77.03 80.94 83.06 
MLP 75.20 78.85 84.97 
 
 
6.3 Neural Networks 
Multilayer Perceptrons (MLP) containing a single 
hidden layer from 5 to 20 nodes were tested in this 
problem. The best performing set was a hidden layer of 
15 neurons trained by backpropagation with a learning 
rate of 0.1 and a momentum term of 0.25. 
 HLVQ was applied upon this MLP with a very 
fast convergence - only 8 iterations. Results obtained 
with MLP and HLVQ are presented in table 5 and 6. 
 Fig 4 presents the code vectors obtained by 
HLVQ corresponding to the two categories: healthy and 
bankrupt companies. Note that of the total 15 
components, five are very similar, thus redundant. The 
remaining ten components are the effective features 
used by HLVQ to classify data. 
 
 
 

 
Fig. 4: HLVQ code-vectors 
 
 
7. Discussion and Conclusions 
Although the performance of the four methods are 
comparable in all datasets, we found that LGP achieved 
consistently the best results. Hidden Layer Learning 
Vector Quantization algorithm performs very closely to 
Support Vector Machines and is more robust than 
multilayer perceptrons.  
 For unbalanced samples the overall accuracy 
improves. However, error type I, the most costly for 
banks, degrades in all machines including LGP. 
Therefore unbalance samples should be avoided.  
 Bankruptcy prediction is an important, 
interesting but difficult problem and further 
investigation is still needed. As a future work we plan 
to use a more complete data set including annual 
variations of important ratios from two or more years. 
As more inputs are added, feature selection will have to 

follow a more stringent scrutiny.  
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