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ABSTRACT A Hidden Layer Learning Vector Quantization (HLVQ), neural network-
learning algorithm is used for correcting the outputs of Multilayer Perceptrons (MLP)
for predicting corporate bankruptcy. We call this method HLVQ-C, and it is shown
that it outperforms both discriminant analysis and traditional neural networks while
significantly reducing type I error, which is the type of error that has the highest
costs for banks. Moreover, our approach gives an estimation of the prediction
robustness thus providing a useful measure of credit risk, which is of great interest
for banks, insurance companies and creditors in general. We also show that
unbalanced samples, containing more financially sound firms than bankrupt firms,
place a strong bias on the classifiers thus leading to a deterioration of type I error
accuracy. Although many studies have been published on bankruptcy prediction using
neural networks or discriminant analysis, they used mainly US or UK samples of
very limited size. Our study is based on industrial French firms, uses a data-set of
583 bankrupt firms over the period 1998–2000 and tests the effects of different
proportions of non-bankrupt firms in the sample. Attention was also given to feature
selection to reduce the dimensionality of the problem.

1. Introduction

Financial distress prediction is of great importance for banks, insurance firms,

creditors and investors. Since the work of Beaver (1966) and Altman (1968)

there has been considerable interest in using financial ratios for predicting the
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financial distress of companies. Using univariate analysis Beaver concluded that

‘Cash Earnings to Total Debt’ was the best ratio for signalling bankruptcy, while

Altman (1968) pioneered the use of multiple discriminant analysis for predicting

bankruptcy. Ever since, discriminant analysis has become a standard approach to

predict financial distress. However, this method has been criticized (Eisenbeis,

1977) due to its linearity, restrictive assumptions and for treating financial

ratios as independent variables.

Non-linear models such as the logit (Martin, 1977; Zavgren, 1983) and the

probit (Amemiya and Powell, 1983) have been used, not only to classify but

also to estimate the bankruptcy probability (McFaden, 1976; Press and Wilson,

1978; Ohlson, 1980; Lo, 1986). However, these models also have important

limitations. First, the choice of the regression function creates a bias that restricts

the outcome. Second, these methods are very sensitive to exceptions, which are

common in bankruptcy. Third, most conclusions have an implicit Gaussian

distribution, which is inappropriate in many cases.

Non-parametric models (Stein and Ziegler, 1984; Srinivasan and Kim, 1987)

like Artificial Neural Networks (ANNs) (Charitou et al., 2004), Genetic Program-

ming (GP) (Banzhaf et al., 1989) and Support Vector Machines (SVM) (Fan and

Palaniswami, 2000) have also been used for bankruptcy classification.

Initially, Barker (1990), Marose (1990) and Berry and Trigueiros (1993)

suggested that ANNs should be used as a complementary tool to classify credit

risk. Subsequently, other authors (Coats and Fant, 1993; Wilson and Sharda,

1994; Yang, 1999; Tan and Dihardjo, 2001) found ANNs a promising and

robust technique outperforming discriminant analysis in bankruptcy prediction.

O’Leary (1998) surveyed the application of neural networks to corporate

failure prediction, concluding that the results were at least as good as those

generated by other techniques.

On the other hand, Altman et al. (1994) criticized the neural networks

approach based on their poor generalization. However, in most studies, the

data-sets used are very small (sometimes with less than 100 cases) and often

highly unbalanced, which does not allow a fair comparison (Grice and Dugan,

2001). Therefore, some authors, such as Laitinen and Kankaanpaa (1999),

were unable to find significant differences in accuracy between neural networks

and other techniques. Nevertheless, the authors generally agree that further

research is required on new network topologies, training algorithms, learning

methods and a combination of techniques to achieve higher predictive capabili-

ties, which is the avenue of our research.

In this work, we use a new training algorithm (HLVQ-C) based on the Hidden

Layer Learning Vector Quantization to improve the prediction of multilayer

neural networks. The main advantages of this algorithm are:

1. It can use a larger set of variables without compromising generalization.

2. It is capable of improving the network predictions for difficult cases and

outliers.
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3. It gives an easy estimate of the prediction accuracy.

Our database sample, containing the financial records of over 1,000 industrial

French companies, is much larger and more complete than most published

studies. We also develop an efficiency measure that takes into account the differ-

ent types of classification error. Finally, we perform statistical tests to evaluate

the classification accuracy.

This paper is organized as follows. The next section describes ANNs, and

Section 3 presents our method and how it is used to correct the output of a Multi-

layer Perceptron. This section also presents the methods used for assessing the

neural network’s predictive capabilities and introduces a modification to the per-

formance measurement proposed by Korobow and Stuhr (1985) for evaluating

the efficiency of early warning models. Methods and criteria used in the multiple

discriminant analysis are also discussed. Section 4 describes the data used in

the research and Section 5 presents the results. Finally, Section 6 outlines the

conclusions.

2. Artificial Neural Networks

Artificial Neural Networks (ANNs) are a set of algorithms inspired by the human

brain’s distributed architecture and parallel processing capabilities. ANNs are

essentially multiple regression machines capable of learning directly from

examples and requiring no prior knowledge of the problem. Data classification

can be viewed as a regression problem, that is, finding a function that maps an

input into the corresponding class whilst minimizing the misclassification rate.

ANNs have intrinsic non-linear regression capabilities that make them highly

competitive for difficult classification problems (Bishop, 1995).

For the researcher and the financial analyst, the main advantage of ANNs is

that there is no need to specify the functional relation between variables. Since

they are connectionist-learning machines, the knowledge is directly imbedded

in a set of weights connecting arrays of simple processing nodes called

neurons. In order to train a neural network properly one needs a large set of

‘good quality’ examples, that is, representative and error-free data. In the case

of bankruptcy problems, the researcher should be cautious when drawing

conclusions from neural networks trained with only one or two hundred cases,

as observed in most previous studies.

Classifying high dimensional data is a difficult task due to the curse of dimen-

sionality. If, for instance, a data point is characterized by 10 variables, each quan-

tized to 10 states, the number of possible configurations is 1010, which requires a

large amount of training to cover this huge search space. Note, however, that this

is a pessimistic estimate since most variables are correlated and the regression

functions are smooth enough that a reasonable estimation can be achieved

from fewer points. Nevertheless, the ANN architecture should be adjusted to

the complexity of the problem. As a rule of thumb, the neural network should

Improving Bankruptcy Prediction 255



have a number of connection weights less than 1/10 of the sample size available

for training. In this work we use between 1,000 and 2,000 examples, correspond-

ing to a number of 100 or 200 weights.

The most common type of neural network is Feed-forward Multilayer Percep-

trons (MLP) with a single hidden layer and trained with back-propagation.

Although other types and training algorithms exist, for most problems MLP

are the simplest and most reliable classifier. The error function used is the

Sum of Square Error (SSE) with sigmoid transference function for the output.

This allows the output y to be assigned directly to a membership probability

(Bishop, 1995). Caution must be used as this interpretation is valid strictly as a

limit, when the training data are infinite. In general, this is not a very reliable esti-

mator of the true class membership probability, especially when data are scarce.

For a single output node, classification is based on the following criteria:

y . u ! y ¼ 1

y , u ! y ¼ 0

�

where u is a threshold parameter that usually takes the value of 0.5. For y ¼ 1 the

prediction is bankruptcy while y ¼ 0 is a healthy firm.

3. The Proposed Neural Networks Model

In this section we review the Hidden Layer Learning Vector Quantization train-

ing algorithm and describe a method where it is used to correct the output of the

MLP.

3.1. Hidden Layer Learning Vector Quantization (HLVQ)

Hidden Layer Learning Vector Quantization is an algorithm developed for classi-

fication of high dimensional data such as financial accounting data. It is

implemented in three steps. In the first step a MLP is trained. In a second step,

a supervised Learning Vector Quantization is applied to the outputs of the last

hidden layer to obtain the code-vectors ~wck corresponding to each class ck in

which data are to be classified. Each example, ~xi, is assigned to the ck class

with the smallest Euclidian distance to the respective code-vector:

k ¼ min
j

~wcj �
~h(~xi)

��� ��� (1)

where ~h is a vector containing the outputs of the hidden layer and k � k denotes the
usual Euclidian distance. In the third step, the MLP is retrained but with two

differences. First, the error correction is not applied to the output layer but

directly to the last hidden layer. The output layer is therefore ignored from

then on. The second difference is in the error correction propagated back to
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each hidden node:

E ¼
1

2

XNh

i¼1

(~wck �
~h(~xi))

2 (2)

where Nh is the number of hidden nodes. After retraining the MLP, using an

incremental strategy, a new set of code-vectors

~wnew
ck

¼ ~wck þ D~wck (3)

is obtained according to the following training scheme:

D~wck ¼ a(n)(~x� ~wck ) if ~x [ class ck
D~wck ¼ 0 if ~x � class ck

: (4)

The parameter a(t) is the learning rate, which decreases with iteration n to

guarantee convergence. Steps two and three are repeated following an iterative

process. The method stops when a minimum classification error is found.

We can calculate the distance of a given example x to each prototype as

di ¼ ~h(~x)� ~wci

��� ��� (5)

which is a measurement of proximity to each class.

3.2. The HLVQ-C Method

One of the major drawbacks of neural networks is their poor performance in data

space not covered by the training data, particularly frequent in high dimensional

data, which is a common problem with the other previously mentioned tech-

niques. In order to alleviate this problem, HLVQ is used to correct the MLP

output, a method that we call HLVQ-C, which is implemented according to

the following scheme.

After the MLP is trained, each case to be tested, xi, is included in the training

set, and the neural network retrained by assigning the output of this company as 0

(healthy). The corresponding output, y0(~xi) ¼ y0i , as well as the respective dis-

tances to each class prototype obtained by HLVQ are calculated as follows:

~d0i ¼ (d0c0, d
0
c1) ¼ ( h0(~xi)� wc0

�� ��, h0(~xi)� wc1

�� ��): (6)

Then the network is retrained again but now the company is assigned as class 1

(bankrupt). The new output y1(~x
i) ¼ y1i and the respective distances to the
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prototype are obtained:

~d1i ¼ (d1c0, d
1
c1) ¼ ( h1(~xi)� wc0

�� ��, h1(~xi)� wc1

�� ��): (7)

Finally, the most likely output is selected by the following heuristic rule:

yi ¼ y0i if d0c0 , d0c1
yi ¼ y1i if d1c1 , d1c0

: (8)

We call this method Hidden Layer Learning Vector Quantization Correction

(HLVQ-C). This method essentially corrects inconsistencies between predictions

made by MLP and HLVQ.

3.3. Generalization and Benchmarking

The quality of a classifier is measured by its generalization capabilities and

robustness. It is very important to avoid over-fitting, a common problem with

neural networks, to validate the generalization capabilities of our method prop-

erly. Generalization measures network performance on unobserved cases and

is often estimated by separating the data-set into two groups: a training set and

a test set. The network is trained within the training set and its performance

tested on unused data from the test set. Over-fitting is avoided by stopping the

training upon reaching a minimum error in the test set. Although this procedure

may be adequate for large data-sets, the test set may not be representative when

data are scarce.

Cross-validation is the most adequate procedure to evaluate the generalization

capabilities of the network. In this case, we used tenfold cross-validation. It con-

sists of dividing the data-set into 10 sets (A1,. . ., A10), using nine (A2,. . ., A10) for

training and the remaining A1 for testing. When training is completed the test

error e1 is recorded and the process is repeated: training with (A1, A3,. . ., A10),

testing with A2 and test error e2 is recorded. After completing the 10 cycles,

the generalization error, or cross-validation error, is calculated as the average

of test set errors.

There are two types of errors in classification problems. Type I error is the

number of companies classified as healthy when they are actually bankrupt

(N10) divided by the total number of bankruptcies in the sample (N1):

eI ¼
N10

N1

: (9)

The double subscript in Nmeans classified-actual, with 1 standing for bankrupted

and 0 for healthy companies.
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Type II error is the number of healthy companies classified as bankrupt (N01)

divided by the number of healthy companies in the sample (N0):

eII ¼
N01

N0

: (10)

The overall error is calculated as follows:

eT ¼
N01 þ N10

N0 þ N1

: (11)

In credit analysis, type I error implies the loss of capital loan and interest

associated with a client that goes bust, when it was classified as healthy. Type

II error leads to the loss of business with an existing or potential customer that

is healthy, but was classified as bankrupt. Therefore, type I error has a higher

cost for banks than type II error. According to Altman et al. (1977) type I

error costs are 35 times higher for banks than type II error costs. However,

other market players may have different approaches. If a government, for

example, decided to implement a formal earlier public warning system, type II

error costs could be higher for the country as a whole than from type I. This is

because, if a healthy company is classified and publicly announced as being at

risk of bankruptcy, the market would react negatively thus disrupting the

firm’s economic relationship with its suppliers and customers, increasing its

probability of distress. Unfortunately, misclassification costs are not sufficiently

documented in the literature and remain largely unknown.

A common difficulty in bankruptcy prediction is the use of non-random

samples leading to biased probability estimations. Zmijewski (1984) studied

two common estimation biases: the choice-based sample bias that results from

‘over-sampling’ bankrupt companies; and the sample selection bias that results

from unavailable or incomplete data for distressed companies, when unavailable

or incomplete data occur non-randomly. Zmijewski (1984) shows that the first

type of bias can be reduced through adequate weighting of the cost function

used in the classification algorithm and that both biases, in general, do not

affect the statistical inferences and the overall classification rates. Wilson and

Sharda (1994) studied the unbalanced number of distressed firms compared to

healthy firms in the sample using three samples with variable proportions of

healthy/bankrupt firms: 50/50, 80/20 and 90/10. They concluded that neural

networks are more robust and outperformed discriminant analysis in overall

classification but did not analyse the effect of type I error and type II error.

Classification performance is commonly measured by the percentage of obser-

vations classified correctly (OC). However, this measure is not adequate to evalu-

ate the efficiency of classification since it blends the two types of errors. For

example, if a sample consists of 70 healthy firms and 30 distressed firms and
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the model classifies all firms as healthy, the overall classification would be 70%

despite the fact that it was unable to identify one single bankruptcy.

To circumvent this problem we use a weighted efficiency (WE) that takes into

account the two types of errors, independently of their cost to the creditor, defined

as follows:

WE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OC � BC � BPC

p
: (12)

OC is the overall classification

OC ¼
N00 þ N11

N0 þ N1

(13)

where N00 is the number of healthy companies classified correctly and N11 the

number of distressed companies classified correctly.

BC is the bankruptcy classification, or the percentage of bankrupt firms classi-

fied correctly:

BC ¼
N11

N1

: (14)

BPC is the bankruptcy prediction classification defined as the number of bank-

rupt firms to the total of predicted bankruptcies:

BPC ¼
N11

N01 þ N11

: (15)

This is a modification to the measure of efficiency presented by Korobow and

Stuhr (1985) and is sensitive not only to the overall classification, but also to type

I and type II errors. For perfect classification, all components are 1 and the

efficiency is 100%. The square root was used since the three ratios are not inde-

pendent. Consider, for instance, a balanced database with type I error equal to

type II error and with a small N01. In this case, N1 ¼ N0 ¼ N/2 and if

N11 ¼ N00 ¼ x, thus

WE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x

N

x

N=2

x

x

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2x

N

� �2
s

¼
2x

N
(16)

which is closer to a linear function of the percentage of companies correctly

classified, x/N, than the Korobow and Stuhr formula.

The predictive capability of our method was compared with traditional Multi-

layer Perceptrons (MLP) and Multiple Discriminant Analysis (MDA) with two

groups. The linear discriminant function was obtained applying a stepwise
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method using a Wilk’s Lambda and the criteria for entry variables was 3.84

F-value and 2.71 for removal for the 20 variables selected by the ANN model.

We ran an MDA with a leave-one-out classification and chose the five best dis-

criminators as the eigenvalues show that selecting more than five ratios would

offer negligible incremental gains in the MDA (see Figure 1).

Additionally we examined whether the five-variable Z-score model of Altman

(1968) produces equivalent results to the MDA. This model has been used exten-

sively as a standard of comparison by both academics and practitioners, as

mentioned by Charitou et al. (2004).

4. Data and Sample

The sample was obtained from Diana, a database containing approximately

780,000 financial statements of French companies and of their foreign subsidi-

aries. The initial sample consisted of financial ratios from 1998, 1999 and

2000 of 2,800 industrial French companies with at least 35 employees. Of

these companies, 311 declared bankruptcy in the year 2000 and 272 companies

submitted a restructuring plan (‘Plan de redressement’) to the court for their

creditor’s approval. We decided not to distinguish between these two categories

since both signal companies in financial distress. Consequently, the sample has

583 financially distressed firms, most of them small to medium size with

35–400 employees.

This study’s input consists of 30 financial ratios published by Coface,1 which

are available from the Diana database (see the Appendix). Additionally, we

include the ratio of Cash Earnings to Total Debt that, according to Beaver

(1966), is the best single discriminator of bankruptcy, the five ratios used by

Altman (1968) in his Z-score model and the logarithm of sales as proxy to size.

Since more healthy firms are available than financially distressed firms, we

randomly selected healthy companies to obtain the following data-sets with the

Figure 1. Eigenvalues for MDA.
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respective ratios of bankrupt to healthy firms: data-set 1 (50%/50%), data-set 2

(36%/64%) and data-set 3 (28%/72%).

4.1. Feature Selection

This study uses more variables than other authors, who usually do not use more

than 10. The ratios initially selected allow for a very comprehensive financial

analysis of the firms including financial strength, liquidity, solvability, pro-

ductivity of labour and capital, various kinds of margins and profitability and

returns. Although, in the context of linear models, some of these variables

have small discriminatory capabilities for default prediction, the non-linear

approaches used here can extract relevant information contained in these ratios

to improve the classification accuracy without compromising generalization.

Feature selection is an important issue in bankruptcy prediction, as in other

problems where a large set of attributes is available, since elimination of useless

features may enhance the accuracy of detection while reducing the amount of

time for processing the data. Due to the lack of an analytical model, the relative

importance of the input variables can only be estimated through empirical

methods. A complete analysis would require examination of all possibilities, for

example, taking two variables at a time to analyse their dependence or correlation,

then taking three at a time, etc. This, however, is both infeasible and not error free

since the available data may be of poor quality in sampling the full input space.

In the first step, highly correlated variables are automatically excluded. In a

second step, elimination is based on the sensitivity of the neural network

output to each variable. We thus evaluate the average sensitivity of every variable

xi, defined as

�Si ¼
1

N

XN
j¼1

y(x
j
1, x

j
2, . . . , x

j
i þ D1i, . . . , x

j
N)� y(x

j
1, x

j
2, . . . , x

j
i, . . . , x

j
N)

D1i
(17)

where the sum is taken over all points of the database, and D1i ¼ 0:1 is a small

perturbation. The average sensitivity measures the linear and additive influence

of the variables on the output. However, this measure does not take into account

non-linear influences and possible interactions with other variables. These

effects can be estimated by evaluating the standard deviation of the sensitivity DSi.

Variables with strong correlations with both small �S and DS were eliminated

(see Figure 2).

Thirteen variables were discarded: variables number 4, 6, 8, 9, 14, 16, 17, 22,

26, 27, 28, 29 and 30 (see Appendix).

Some of the selected ratios have large annual variations, sometimes greater

than 20 or 30%, especially for companies that subsequently became financially

distressed. Therefore, bankruptcy prediction based on financial ratios in a

single year may be inaccurate, as it does not take these annual fluctuations into
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account. To circumvent this difficulty and to include relevant information from

previous years, without overloading the neural network, we added the annual

variation of the most important variables: Debt Ratio, Percentage of Value

Added for Employee and Margin before Extra Items and Taxes. The final set

had 20 inputs normalized to zero mean and unity variance.

5. Results and Discussion

We tested several neural networks with a single hidden layer, using between five

and 20 nodes. We chose a hidden layer of 15 neurons, a learning rate of 0.1 and a

momentum term of 0.25. Although smaller networks achieve slightly lower

generalization errors, we had to establish a compromise since HLVQ-C performs

better on larger hidden layers.

Some firms in the database have a financial record that clearly contradicts their

actual financial status. For these evident cases, we decided to invert their output

state artificially. This is the case for companies with negative shareholder equity,

known as ‘technical bankruptcy’, which we always assigned to the financial dis-

tress category independently of their original category. Although this accounts

for less than 3% of bankruptcies in the sample, some improvements were

achieved on the training and testing error. The number of these cases found in

our database shows that French managers and creditors do not initiate legal bank-

ruptcy or restructuring processes immediately after the occurrence of financial

distress.

Figure 2. Sensitivity analysis for variable selection
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Table 1 shows the results obtained in the balanced and unbalanced data-sets for

1999, one year prior to the bankruptcy announcement. The training error is con-

siderably smaller than the generalization error, indicating that training data are

insufficient. As expected, type I error is higher than type II since distressed com-

panies are more heterogeneous and harder to identify. The results clearly show

that using unbalanced samples is inadvisable, as type I error may increase

considerably while type II error only improves slightly.

We tested the statistical significance of our results on the percentage of firms

correctly classified applying the t-test to data-set 1 for 1999 and found statistical

significance differences. When comparing HLVQ-C with MLP, we found a

t-value of 2.16 whereas the t-value for the comparison of HLVQ-C and MDA

is 4.30.

In Table 2, we compare the weighted efficiency achieved by the four methods.

For all samples, HLVQ-C is clearly superior to the discriminant analysis and the

non-corrected MLP. The efficiency of discriminant analysis deteriorated more

noticeably than neural networks on unbalanced samples, and HLVQ-C is again

the method with the highest stability.

Table 2. Weighted efficiency for 1999

Sample 50/50 36/64 28/72

Discriminant:
Best discriminant variables (%) 66.1 60.2 59.3
Z-Score variables (%) 62.7 52.1 47.5
Neural networks:
MLP (%) 71.4 68.5 65.0
HLVQ-C (%) 84.1 78.9 71.0

Table 1. Results for a set sample of balanced and unbalanced sub-samples for 1999

Bankrupt/
healthy

Training error Generalization error

Type I
error (%)

Type II
error (%)

Type I
error (%)

Type II
error (%)

50/50
MLP 15.9 10.6 25.7 13.1
HLVQ-C 10.1 8.2 11.1 10.6
36/64
MLP 13.8 4.6 30.9 8.8
HLVQ-C 5.8 2.1 18.7 7.3
28/72
MLP 14.2 2.6 35.8 7.1
HLVQ-C 11.2 1.8 29.0 6.3

HLVQ-C means the output of the MLP is corrected by the method using HLVQ distances.
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We repeated the analysis for 1998, two years before bankruptcy.

As expected, predictions from all models deteriorate. The results from HLVQ-

C are, once again, clearly superior to the traditional non-corrected MLP (Table 3)

with statistically significantly lower error type I (Table 4). It can be seen that

neural networks are less biased than discriminant analysis on unbalanced

samples.

We also compared the efficiency of the neural network with the five ratios used

in the discriminant model (Debt Ratio, Logarithm of Sales, Value Added per

Employee, Accumulated Depreciation Ratio and Return on Assets), with a

neural network – Table 5. We used only five hidden nodes in order to reduce

the complexity of the network since a smaller set of variables is used. The

generalization error, as expected, is slightly higher than with the full 20 inputs.

However, HLVQ-C was unable to correct efficiently these errors since it does

not have sufficient degrees of freedom in the hidden layer.

From sensitivity analysis applied to the neural network, we found that the most

significant ratios signalling a financially distressed company (positive sensi-

tivities) are Debt Ratio, Percentage of Value Added for Employees and Debt

Ratio Variation. On the other hand, the most relevant ratios for a healthy

Table 3. Weighted efficiency for 1998

Sample 50/50 36/64 28/72

Discriminant analysis:
Best discriminant variables (%) 66.4 59.5 47.3
Z-Score variables (%) 61.1 50.9 32.0
Neural networks:
MLP (%) 67.7 69.5 60.1
HLVQ-C (%) 76.5 74.3 69.5

Table 4. Type I error for balanced and unbalanced samples

Sample 50/50 Sample 36/64 Sample 28/72

1998 1999 1998 1999 1998 1999

Discriminant:
Best discriminant variables 24.9 26.4 44.5 44.6 68.4 51.5
(t-Test against HLVQ-C) (2.7)� (6.0)� (8.0)� (8.9)� (8.8)� (5.4)�

Z-Score variables 31.6 26.8 57.1 54.5 83.2 66.0
(t-Test against HLVQ-C) (4.6)� (5.5)� (11.8)� (11.8)� (12.2)� (8.7)�

Neural networks:
MLP 24.9 25.7 30.9 30.9 44.9 35.8
HLVQ-C 16.0 11.1 16.0 18.7 27.8 29.0
(t-Test against HLVQ-C) (2.1) (4.8)� (3.2)� (3.6)� (4.2)� (1.9)

�Statistically significant at 1% level.
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company (negative sensitivities) are Valued Added per Employee, Margin before

Extra Items and Taxes, and Accumulated Earnings to Assets.

Financial distress companies tend to have higher debt ratios and lower value

added. For these companies, the percentage of value added attributed to employ-

ees is higher, and in some cases, employees absorb the total value added gener-

ated by the company. It is also worth noting that salaries in France tend to be a

fixed cost because of labour legislation.

Financially healthy companies are characterized by high productivity and, con-

sequently, higher value added per employee and profitability, with larger margins

before extra items, taxes and higher accumulated profits.

5.1. Robustness

We can use HLVQ-C to estimate the robustness of the prediction. For simplicity,

consider a trained MLP with a single hidden neuron and a single output y. The

correction to y introduced by adding a new element (~x, t) in the training set is

Dy ¼
@y

@t
Dt ¼

@y

@w

@w

@t
Dt (18)

where t is the target, w the last layer network weight and Dt ¼ (t � y) the output

correction. Following the back-propagation algorithm, for a sigmoid transference

function, we have

jDwj ¼ hy(1� y)hDt (19)

where h is learning rate and h the hidden layer output. The correction is therefore

jDyj ¼ hy(1� y)
@y

@w
hDt (20)

where the term @y=@w is evaluated numerically. If the company is classified

beyond doubt, then y � 1 or y � 0 and corrections are small. Major corrections

occur when y � 0.5, that is, points closely located to the MLP separation

Table 5. Neural networks trained with the five inputs chosen by the discriminant analysis,
using the balanced database (in 1999)

Training error Generalization error

Type I error Type II error Type I error Type II error

MLP 20.1 15.6 25.3 17.1
HLVQ-C 14.3 10.5 23.7 14.8
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hyperplane, and points located in regions poorly covered by the training data

where @y=@w is important.

The output variation

1 ¼ jDyj ¼ jy1 � y0j (21)

measures the robustness of the prediction against variations in target values. This

estimate is of great importance for the analyst since it quantifies the reliability of

predictions made by the neural network.

5.2. Some Examples of HLVQ-C Corrections

Finally, the capabilities of HLVQ-C to correct the output of the MLP are demon-

strated by analysing some cases (Table 6). Cases 1–3 are bankrupt companies

and case 4 is a healthy company. Note that in all these cases the Z-score fails

the prediction.

Case 1 is a small bankrupt company with 44 employees. Although it has a low

debt ratio, the percentage of value added absorbed by employees is high and the

margin before extra items and taxes is low. The MLP predicts a bankruptcy prob-

ability of 0.19 only, but HLVQ-C estimated 0.31, pushing the probability in the

right direction. The financial situation of case 2 is worse, with higher debt ratio,

higher value added absorbed by employees and a negative margin before extra

items and taxes. The MLP probability of bankruptcy is 0.49, which is hard to

classify but the HLVQ-C adjusts the probability to 0.70, which is clearly a bank-

rupt company. Case 3 is a less clear situation. The debt ratio is relatively high but

with substantial improvement. The profitability is however low and the value

added absorbed by employees high. The HLVQ-C corrects the probability of

bankruptcy from 0.36 to 0.55, moving the probability in the right direction.

Case 4 is interesting because, from a financially difficult situation in 1998,

the company was able to achieve a remarkable improvement in economic

Table 6. Some examples with significant corrections from HLVQ-C

Case study 1 2 3 4

Employees 44 37 51 60
Debt ratio 62.8 90.8 78.7 66.3
Debt ratio previous year 51.8 74.1 91.8 91.6
Value added per employee 20 28 40 31
Value added for employees 93.7 98.7 84.6 72.3
Margin before interest and taxes 21.5 25.6 0.1 9.0
Margin before interest and taxes in previous year 2.4 24.9 1.08 210.6
Z-Score 3.24 2.63 3.08 1.79
MLP 0.19 0.49 0.36 0.90
HLVQ-C 0.31 0.70 0.55 0.62
Variation (1) 0.11 0.25 0.26 0.38
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performance and financial position in 1999. Based on the previous year’s per-

formance, the neural network assigns a high bankruptcy probability (0.9).

However, HLVQ-C is able to correct this value to 0.62. Moreover, the large 1

parameter (0.37) is also an indication that this is an uncommon situation and

the prediction has a high level of uncertainty.

6. Conclusions

We applied neural networks to bankruptcy prediction using a new method called

HLVQ-C. This method can handle a higher number of financial ratios and is able

to substantially improve the predictions of MLP without compromising

generalization.

A measure of classification efficiency was introduced to evaluate the method’s

performance. We found that HLVQ-C clearly outperformed linear discriminant

analysis, the Z-score model of Altman and traditional neural networks.

Predictions based on the financial ratios of a single year can be misleading as

some ratios show large yearly variations. When one-year variations of the major

ratios were included, the predictions improved substantially. These results show

that it is desirable to include more years in the analysis, as two years is not enough

to determine a trend.

We also concluded that it is desirable to use balanced data-sets, containing the

same number of healthy and bankrupt companies, in order to constrain type I

errors.

Banks and creditors in general can benefit from the method that shows a

significant statistical reduction of type I error and that consequently reduces

the costs of default. For their credit strategy, banks could also use the output

of a HLVQ-C model for targeting sectors that tend to have a lower probability

of bankruptcy. They could also use the model to estimate the credit at risk by

applying the borrower’s probability of default. Credit risk management is ‘a criti-

cal component of a comprehensive approach to risk management and essential to

the long-term success of any banking organization’ (Basle Committee on

Banking Supervision, 2000). Therefore, banks using discriminant analysis for

credit risk management could benefit by incorporating this model in their

systems.
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Note

1Coface is a credit risk provider in France that offers the Conan–Holder bankruptcy score, a

score based on a discriminant analysis developed by the authors (Conan and Holder, 1979).
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Appendix

Table A1. Mean and standard deviation of all indicators for bankrupt and healthy compa-
nies in 1999

Ratio Definition Bankrupt (x̄i, si) Healthy (x̄i, si)

1 Number of employees 85, 83 129, 118.3
2 Financial equilibrium ratio 3.2, 47.5 2.0, 11.2
3 Equity to stable funds 23.0, 115.6 40.9, 18.1
4 Debt to stable funds 33.5, 72.3 14.0, 12.8
5 Financial autonomy 7.2, 32.4 38.3, 18.3
6 Accumulated depreciation rate (%) 66.1, 20.6 68.5, 14.3
7 Current ratio 1.3, 0.6 0.4, 0.3
8 Quick ratio 0.9, 0.5 1.4, 1.3
9 Inventory days of sales 57.0, 66.8 56.1, 63.5
10 Collection period 62.1, 42.9 74.6, 33.0
11 Interest to sales (%) 1.9, 5.3 1.2, 1.9
12 Debt ratio 89.2, 31.9 58.4, 18.4
13 Financial debt to cash earnings 4.7, 68.7 1.9, 52.2
14 Cash earnings to sales (%) 20.08, 13.8 4.8, 6.1
15 Working capital in sales days 19.0, 77.5 77.5, 81.3
16 Working capital requirements in sales days 14.1, 77.2 56.6, 67.0
17 Exportation (%) 14.5, 21.7 18.8, 23.9
18 Value added per employee 32.8, 15.8 48.9, 29.0
19 Value added to assets 0.6, 0.5 0.4, 0.2
20 EBITDA margin 1.4, 13.3 7.3, 7.5
21 Margin before extra items and taxes 22.6, 18.3 4.0, 7.0

(continued)
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Table A1. Continued

Ratio Definition Bankrupt (x̄i, si) Healthy (x̄i, si)

22 Net margin 22.1, 18.2 2.1, 6.3
23 Return on equity 244.0, 116.3 12.0, 34.1
24 Value added margin 42.3, 19.4 39.2, 15.3
25 Percentage of value added for employees 91.5, 32.4 76.1, 31.1
26 Sales (’000 euro) 9,093, 17,350 25,217, 40,412
27 Working capital to current assets 0.04, 0.5 0.4, 0.3
28 Payment period 89.0, 121.3 77.0, 31.1
29 Debt on sales days 209.0, 193.2 142.0, 73.3
30 Return on equity before extra items and

taxes
240.1, 135.4 12.4, 34.0

Altman ratios (Z-score)
31 Working capital to assets 0.067, 0.32 0.288, 0.19
32 Accumulated earnings to assets 20.071, 0.36 0.234, 0.21
33 Return on assets 0.001, 0.14 0.066, 0.09
34 Equity to debt 0.205, 0.42 0.944, 1.39
35 Asset turnover 1.948, 0.92 1.711, 0.73
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